
Blockchain-based Bidirectional Transformations for
Access Control and Data Sharing in EMRs

Tao Zan
zantao007@gmail.com

School of Mathematics and Information Engineering,
Longyan University

Fujian, China

Zhenjiang Hu
huzj@pku.edu.cn

Key Lab of High Confidence Software Technologies,
Ministry of Education, Department of Computer Science

and Technology, EECS, Peking University
Beijing, China

Abstract
Electronic medical records (EMRs) are scattered in different
hospitals, which hinders the process of data sharing. On the
other hand, peoplewith different roles should access different
parts of data, thus we need a way to control the accessibility.
To address these issues, we propose a blockchain-based data
sharing system that gathers EMRs into blockchain and con-
trols data sharing through bidirectional transformation. In
our system, EMRs are encoded with a carefully designed data
structure that stores not only data, but also data’s read/write
permission for different roles. We redesigned a bidirectional
transformation language based on our previous work BiGUL
by taking access control into consideration, and the accessi-
bility are checked during program execution in both direc-
tion to avoid un-authorized data access. Further more, each
bidirectional transformation program and updates on the
shared data are stored in the blockchain in a transaction-like
form. The immutability of blockchain guarantees EMR’s data
integrity.

CCS Concepts: • Software and its engineering→Appli-
cation specific development environments.

Keywords: bidirectional transformation, blockchain, access
control

ACM Reference Format:
Tao Zan and Zhenjiang Hu. 2020. Blockchain-based Bidirectional
Transformations for Access Control and Data Sharing in EMRs.
In 12th Asia-Pacific Symposium on Internetware (Internetware’20),
May 12–14, 2021, Singapore, Singapore. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3457913.3457915

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Internetware’20, May 12–14, 2021, Singapore, Singapore
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8819-1/20/11. . . $15.00
https://doi.org/10.1145/3457913.3457915

1 Introduction
Suppose a patient often goes to several hospitals (A near
home, B close to work place, and even C for special treat-
ment), and thus his/her medical records are scattered. Since
each hospital only has partial information, a doctor needs to
inquire about past data from other hospitals which will prob-
ably delay the treatment process, as the data shared from
other hospitals may not update-to-date. In general, there
should be a place where all the medical records are gathered.
On the other hand, patients should be able to see their

own medical records, but this does not mean every detail.
For example, doctor’s psychotherapy notes, or physician in-
tellectual property should not be made available to patients
or even other parties. Medical records are also useful for
research, but when sharing with researcher we shall not ex-
pose patients’ private/sensitive information (i.e. name, home
address, phone number). Only research related information
such as medicine name, mechanism of medicine and the
symptom before and after treatment could be shared. We
need a way to control the accessibility for different roles.

Several inspiring works [2, 6, 14] have been done, and they
all follow a similar approach. In order to gather fragments,
instead of storing data in each hospital’s local database, send-
ing all the data to a trusted server/cloud which can only be
accessed by authorized users. Moreover, a cryptographic
hash of a medical record is stored on the blockchain to guar-
antee data integrity. If the medical record in the server/cloud
storage is tampered, the hash value of the modified record
will not be the same with the one stored on the blockchain.
Smart contract [13] or Chaincode [5] is used to code permis-
sions. Only if a user satisfying the permission can be agreed
by blockchain nodes and granted to read/write data.
Since permission handling and data retrieving are two

separate processes, even though smart contract or chaincode
can be used to store and verify permissions, we cannot guar-
antee that an actual action (database query/update executed
off-blockchain) is conformed with the corresponding permis-
sion. On one hand, as an action can be a complicate program,
we cannot formally check the program satisfies the given
permission; On the other hand, if someone tampers with
the program, permission checking on smart contract cannot
stop execution of the program.

https://doi.org/10.1145/3457913.3457915
https://doi.org/10.1145/3457913.3457915

Internetware’20, May 12–14, 2021, Singapore, Singapore Zan and Hu, et al.

We think actions should also be stored on blockchain as
transactions, to make it transparent and tamper-proof. Fur-
ther more, permission checking should be embedded into the
action, to make their behavior consistent. Instead of checking
permission using smart-contract firstly and then executing
a separate program to retrieve data, we do it in the other
way around. During execution of query/update, when facing
basic data (i.e. name, address), we check whether the user
has proper permission. If the user has no read permission,
then the query action is prohibited. If the user has no write
permission, the data will not be updated.
We propose a new framework that combines blockchain

and bidirectional transformation. In our system, every thing
(record, permission, and query/update operation) is stored
on the blockchain. We carefully define the data structure for
EMRs that includes both data and permission. There is a one-
to-one mapping between each data item (i.e. name, address)
and its permission. Each permission contains read/write in-
formation for different roles (patient, doctor, researcher).

Bidirectional transformation (BX in short) provides amech-
anism that one program can be executed in both forward
(get) and backward (put) directions , which can be used to
query (get) parts of data as a view from a big source, or re-
flect (put) updates on the view back to the source. Based
on our previous work BiGUL [12], we revised its semantics
to decompose permission data when decomposing medical
record data, and the semantics will further check accessi-
bility of data against corresponding permission. Through
get transformation, different person queries different part
of data from full EMRs and the get semantics guarantee the
person has proper permission to read the data; Through put
transformation, all invalid updates (no write permission, or
big change that violates put semantics) will be rejected.
We do not directly store full medical records for one pa-

tient. Only modifications on view and bidirectional trans-
formation program that computes this view are stored on
the blockchain in a transaction-like form. Just as computing
account balance in bitcoin, full EMRs can be constructed by
computing all related transactions in chronological order.
In this paper, we propose a novel framework that gath-

ers all EMR-related data in one place on blockchain and
supports access control and data sharing of EMRs among
different people through bidirectional transformation. Our
main contributions can be summarized as follows:

• As far as we know, we are the first one to propose a
blockchain-based bidirectional transformation frame-
work that combines the merits of both bidirectional
transformation and blockchain technology.

• We redesign the bidirectional transformation seman-
tics by taking access control into consideration. For
a given BX program, if user has permission to read-
/write record data, then the program generates result,
otherwise, it will fail.

Source View

Updated

Source

Updated

View

get

put

Figure 1. Bidirectional Transformation

• Wedefine a bitcoin-like blockchain to store EMR-related
data and bidirectional program. The program and mod-
ifications on view are packed as a transaction on the
blockchain. The immutability of blockchain guaran-
tees data integrity. All of the transactions are validated
before pushing to the chain. The proof-of-work con-
sensus algorithm, the underlying peer-to-peer sharing
of chain data, and the longest-chain property prevent
transactions from tampering.

• We implemented a prototype system in TypeScript
for blockchain-based bidirectional transformation and
tested it with a typical medical data sharing example
which shows the correctness and usefulness of our
system.

The rest of this paper is organized as follows: in Section 2,
we formally introduce bidirectional transformation, as well
as blockchain technology. In Section 3, we give an overview
of system architecture.We present our designed bidirectional
transformation language in Section 4, and explain the de-
sign and implementation detail of blockchain in Section 5.
Section 6 shows a case study of EMRs. Section 7 presents
related work. We conclude this paper in Section 8, where we
discuss future work.

2 Background
2.1 Bidirectional Transformation
Bidirectional transformation [3] consists of a pair of func-
tions (get and put) as shown in Figure 1. The get function
extracts part of information from source to construct a view,
and the put function takes an updated view and the orig-
inal source as inputs and outputs an updated source. Any
updates on source can be reflected to view through get, and
modifications on the view can be reflected back to the source
through put.

Bidirectional transformation provides a mechanism for
maintaining the consistency between two related informa-
tion. To guarantee the correctness, this pair of get and put
needs to satisfy two propertieswhich is calledwell-behavedness.

𝑝𝑢𝑡 (𝑠, 𝑔𝑒𝑡 (𝑠)) = 𝑠 (getput)
𝑔𝑒𝑡 (𝑝𝑢𝑡 (𝑠, 𝑣)) = 𝑣 (putget)

The getput property means that a bidirectional transfor-
mation is stable: putting back a target immediately after
getting it shall yield the original source. The putget property

Blockchain-based Bidirectional Transformations for Access Control and Data Sharing in EMRs Internetware’20, May 12–14, 2021, Singapore, Singapore

PrevHash PrevHash

Block n Block n+1

Transaction

FromAddress

ToAddress

Amount

Transaction

Transaction

Transaction

FromAddress

ToAddress

Amount

Transaction

Transaction

Figure 2. A Chain of Blocks

means that a bidirectional transformation is acceptable and
all target updates can be reflected to the source: applying the
forward transformation after putting back any view shall
return the same target.
Many bidirectional programming languages [4, 7, 9, 11]

have been proposed, and we deploy the putback-based ap-
proach [10, 12, 17, 20, 21]. Since the programmer only need
to write one put transformation, from which a unique for-
ward transformation can be derived for free. We will explain
our putback-based language in detail in Section 4.3.

2.2 Blockchain

A blockchain is a type of distributed database that ev-
ery node has the same copy of transaction data which pro-
vides robustness and prevents single-point-of-failure. The
blockchain is in the form of chained blocks chronologically,
as shown in Figure 2. Each block contains a list of transac-
tions, and each transaction includes sender and receiver’s
address, together with the amount to be sent. Moreover, each
block is marked with the hash (PrevHash) of previous block,
which makes transaction data immutable and traceable.

In Bitcoin [16], the consensus of nodes is achieved by using
proof-of-work mechanism. The proof-of-work is based on an
algorithm to find a nonce so that the hash result of a block’s
data smaller than a certain value. After reaching consensus
by 51% of the participants in the distributed network, valid
blocks will be added to the blockchain.
3 Architecture Overview
Our system is devised in a two-layer architecture, con-

sisting of on-chain layer and off-chain layer, as shown in
Figure 3. The function of each layer is described as follows.

The upper part is a bitcoin-like blockchain, which consists
of a sequence of chained blocks, each block stores the hash
value of its previous block. Each block’s data area keeps a
record of signed and validated transactions. Each transac-
tion is signed with the person’s (who issued the transaction)
private key, the blockchain can verify the signature by us-
ing the person’s public key derived from the FromAddress.
Instead of storing the detail of digital assets transferred from
A to B in the bitcoin system, a transaction includes role of

the actor (patient, doctor, and researcher), modifications on
view by calculating the difference between original view and
updated view, and the corresponding bidirectional transfor-
mation program written in our designed language.

The lower part is the off-chain layer. When a specific bidi-
rectional program is given, such as BX𝑑𝑜𝑐𝑡𝑜𝑟 , the off-chain
layer can fetch a specific view of some patient’s medical
records from the blockchain by running the get (BX𝑑𝑜𝑐𝑡𝑜𝑟_𝑔𝑒𝑡)
direction of the bidirectional program. If the doctor modifies
one medical record as marked in red color in Figure 3, then
the off-chain layer will package the modification, the BX
program (BX𝑑𝑜𝑐𝑡𝑜𝑟), as well as the role information into a
transaction, and sign the transaction with the doctor’s pri-
vate key. After that, the transaction will be added to the
blockchain’s pending transaction list if the transaction is
valid. If the transaction is a valid transaction (the modifi-
cation on the records satisfies access permission and the
signature is also valid), then the transaction will be mined
and packaged into a block in the blockchain.
4 Refinement of BiGUL
4.1 Data Structure for Medical Records
We carefully design the data structure for medical records, by
following the principle of simplicity and expressiveness. On
top of that, we build a robust bidirectional transformation
language to manage the data.

Since the whole system is built using TypeScript language,
we will mainly describe the detail using TypeScript syntax.
We define an interface for the Source, which contains two
parts: the actual medical record data part (𝑑𝑎𝑡𝑎) and the
description of accessibility (𝑎𝑐𝑐𝑒𝑠𝑠).

interface Source {

data: Data;

access: Access;

}

For simplicity, we use a syntaxwhich is similar to Haskell’s
datatype definition to describe the data structure. The data
can be a list of Data, a Data pair, an object that contains a
Name (which is a string) points to its value which is also
a Data, and basic data such as a string, number or boolean
value.

Data = [Data]

| (Data , Data)

| {Name: Data}

| string | number | boolean

Note that: (1) there is no pair type in TypeScript, we de-
fined a Pair class, with a left() and right() function to re-
trieve left and right part of the pair; (2) we enforce there
should be only one attribute in an object (we call it one-
attribute object), i.e., in the form of {Name : Data}. Multiple
attributes can be implemented using pair. For example, a
person with a name and a phone number can be described
as ({name : ”Alice”}, {phoneNumber : 0345559584}).

Internetware’20, May 12–14, 2021, Singapore, Singapore Zan and Hu, et al.

PrevHash

Transaction

FromAddress

ToAddress

A view diff

A BX program

Role

Transaction

Transaction

PrevHash PrevHash

Block n-1 Block n Block n+1

Doctor’s View

Medical record

Medical record

Medical record

Medical record

Signed Transaction

AddTx

Transaction

FromAddress

…
Packaging

FromAddress

…

Signing

Researcher’s View

Medical record

Medical record

Medical record

Medical record

AddTx

Packaging

Transaction

FromAddress

ToAddress

A view diff

A BX program

Role

Transaction

Transaction

Transaction

FromAddress

ToAddress

A view diff

A BX program

Role

Transaction

Transaction

Signed Transaction

Transaction

FromAddress

…

FromAddress

…

Signing

BX
doctor—

get BX
researcher—

get

Figure 3. An Overview of Blockchain-based Bidirectional Transformation System

The definition of Access is simpler, which only contains a
Role and a pair of Roles. A pair of Roles always goes after a
pair of Datas. The access definition for list and one-attribute-
object is simplified. Since list is used to store a sequence of
data with the same type, so we just use 𝑅𝑜𝑙𝑒 instead of [𝑅𝑜𝑙𝑒]
to define the access information for list. The accessibility for
an one-attribute object is the same as its value.

Access = (Role , Role)

| Role

Role has three types: researcher, doctor and patient. For a
given data, the read and write permission for each role must
be defined.

interface Role {

researcher: Authority;

doctor: Authority;

patient: Authority;

}

interface Authority {

read: boolean;

write: boolean;

}

Following is an example that defines data and access for
a person’s name and phone number. We can see that all of
them have read permission for both name and phoneNumber ,
and only patient has write permission.
{

data: (

{name: "Tao Zan"},

{phoneNumber: 15705832363}

),

access: (

{researcher :{read:true , write:false},

doctor :{read:true , write:false},

patient :{read:true , write:true}

},

{researcher :{read:true , write:false},

doctor :{read:true , write:false},

patient :{read:true , write:true}

}

)

}

The data structure for view is simplified that excludes the
access information. Note that in the final view presented
to end-user, we will use access information to guide and
restrict data modification, but for simplicity access data are
not stored in this view. If the end-user bypasses the access
checking on the view, unauthorized modification will still
be prohibited when putting back to the source.

interface View {

data: Data;

}

4.2 Formalization of Bidirectional Transformation
with Access Control

We slightly modified the definition of get and put function in
bidirectional transformation by adding an extra parameter
Role. The role is defined as an enumerate type that only has
three values : patient, doctor , and researcher .

Blockchain-based Bidirectional Transformations for Access Control and Data Sharing in EMRs Internetware’20, May 12–14, 2021, Singapore, Singapore

bigul ::= Replace | Skip| Iter bigul | upat

| RearrS pat env bigul

| RearrV pat env bigul

upat ::= UVar bigul | UIn upat | UConst val

| ULeft upat | URight upat

| UProd upat upat

pat ::= PVar var | PConst val | PIn val pat

| PLeft pat | PRight pat

| PProd pat pat

env ::= EConst val | EProd env env

| ELeft env | ERight env

| EIn val env | EDir dir

dir ::= DVar var | DLeft dir | DRight dir

Figure 4. Language Definition

Lemma 1 (Permission Implication). For an attribute, if a
role has write permission, then it implies the role has read
permission.

The permission implication is quite straight forward: a
role has write permission means he/she can modify the data.
Before modification, he/she needs to query the data which
means he/she has read permission.

Since both the get and put semantics will check the acces-
sibility for a given role, then the transformation may fail if
the permission is denied. We use fail to denote the failure of
a transformation.

𝑔𝑒𝑡 (𝑟𝑜𝑙𝑒, 𝑠) = 𝑣 𝑜𝑟 fail

𝑝𝑢𝑡 (𝑟𝑜𝑙𝑒, 𝑠, 𝑣) = 𝑠 ′ 𝑜𝑟 fail

The well-behavedness is still guaranteed:

𝑔𝑒𝑡 (𝑟𝑜𝑙𝑒, 𝑠) = 𝑣 → 𝑝𝑢𝑡 (𝑟𝑜𝑙𝑒, 𝑠, 𝑣) = 𝑠 (getput)
𝑝𝑢𝑡 (𝑟𝑜𝑙𝑒, 𝑠, 𝑣) = 𝑠 ′ → 𝑔𝑒𝑡 (𝑟𝑜𝑙𝑒, 𝑠 ′) = 𝑣 (putget)

If get (role, s) fails which means we have identified an
permission-denied action and the program will terminate.
There is no need of checking getput property and it is the
same for the other way around. The getput property says if
get (role, s) can successfully compute a view v, then we will
get the original source s when directly putting this view v
back. The putget property says if put (role, s, v) can success
successfully compute an updated source s′, then we can get
the exact view v by executing get (role, s′).

4.3 Language Syntax
Having explained the data structure for medical records in

our system, we nowmove to the refined BiGUL [12] language
itself. In our refined language, to keep it concise and simple,
we removed several unneeded operators. The syntax is the
same as the BiGUL, but the semantics are revised by taking
access control into consideration.

Replace uses a given view to update the source by replacing
it, Skip skips the source and the view shall be empty(null).
Given a source list and a view item, Iter will use the bigul
to update each source item in the list using the view. upat
performs pattern matching on the source.

RearrS rearranges source by firstly using pat to decompose
the source, then using env to construct a new source, and
finally performing bigul on this new source. RearrV is similar
to RearrS, except that all the view variables must be used to
update the source, and this is necessary for embedding view
into source, so we can get the view from source.
UProd is used to match pair-structured data of source,

ULeft and URight only match left and right part of the pair
respectively,UConst matches source against a constant value,
UIn steps into the source when source is an on-attribute-
object, UVar defines a hidden variable that points to the
matched part of the source which will be updated in the
bigul program.

pat, env, and dir are used in RearrS and RearrV to per-
form pattern matching on source/view and construct a new
source/view.

4.4 Replace
Permission handling is mainly done in Replace, and thus we
describe its semantics of get and put in detail.
Definition 2 (get of Replace).

𝑔𝑒𝑡 (𝑟𝑜𝑙𝑒, 𝑠) =
{
𝑠, if read permission is true
fail, otherwise

For get direction, if a person has read permission, we con-
struct a view which is the same with source data, otherwise
throw an error to indicate the person has no read permission.
Definition 3 (put of Replace).

𝑝𝑢𝑡 (𝑟𝑜𝑙𝑒, 𝑠, 𝑣) =


𝑣, if write permission is true
𝑠, if read permission is true and v equals s
fail, otherwise

For put direction, if the person has write permission, then
we will update the source data with view data. If the person
has no write permission, but he/she can read the data, then
we check the equality of source and view data. If they are
equal, then we directly return the original source. If not,
we throw an error to indicate the view data shall not be
modified.
We can easily check the well-behavedness property by

hand, and we omit the formal proof.

4.5 Source Rearrangement
RearrS accepts three arguments: pat, env, and bigul. pat is
short for pattern. Given a source, we performs pattern match-
ing on the source data. env is used to construct a new sub-
source, and finally a bigul program is used to synchronize
between this new sub-source and view.

Internetware’20, May 12–14, 2021, Singapore, Singapore Zan and Hu, et al.

4.5.1 Example. Suppose we have a source that contains a
pair of name and location. For simplicity, we omit the access
information here.

{

data: (

{name: "Tao Zan"},

{location: "LY"}

),

access: ...

}

For this example, the source is a pair of name and location
one-attribute object. We can write the following patterns:

• new PProd (new PVar (), new PVar ()): the left PVar
matches the left part, i.e. {name : ”Tan Zan”}, and the
right PVar matches {location : ”LY”}.

• The second pattern:
𝑛𝑒𝑤 PProd (𝑛𝑒𝑤 PIn(”𝑛𝑎𝑚𝑒”, 𝑛𝑒𝑤 PVar ()),

𝑛𝑒𝑤 PConst ({𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 : ”𝐿𝑌 ”}))
PIn sayswe dig into the one-attribute object, andmatches
the value that the name points to, so PVar matches
”Tao Zan”. PConst adds a constraint that the right part
must be the same as {location : ”LY”}.

Now we construct a new sub-source by retrieving the
values that PVar matched in the pattern.

• For the first pattern, if we want to shift name and
location, we can write a env like:
𝑛𝑒𝑤 EProd (𝑛𝑒𝑤 EDir (𝑛𝑒𝑤 DRight (𝑛𝑒𝑤 DVar ())),

𝑛𝑒𝑤 EDir (𝑛𝑒𝑤 DLeft (𝑛𝑒𝑤 DVar ())))
This pattern will construct a new pair that the left side
is the location object and right is the name object.

• For the second pattern, we could extract the only one
PVar as the new sub-source:

𝑛𝑒𝑤 EDir (𝑛𝑒𝑤 DLeft (𝑛𝑒𝑤 DVar ()))
Since PConst occupies one hole in the patternmatching
result (the result is like (𝑣𝑎𝑙, 𝑛𝑢𝑙𝑙)), so DLeft is used to
retrieves the left value of the result pair.

Finally, suppose our view only contains name value:
{data: "Tao Zan"}

Our intention is to keep the location as a constant and
changes of the value on the view should be reflected back
to the source. We can write the following program to syn-
chronize between source and view. Since the data of the new
sub-source is the same as the view, so we just call Replace
operation.

new RearrS(

new PProd(new PIn("name", new PVar()), new

PConst ({ location: "LY"})),

new EDir(new DLeft(new DVar())),

new Replace ()

)

The language syntax and semantics of RearrS might take
time to understand. In fact, bidirectional transformation
serves as the underline engine of our permission checking
and data synchronization parts. In the final system, we can
provide a graphic user interface for end-user to select at-
tributes they are interested, and the system automatically
generates bidirectional program for free.

5 Design of Blockchain
We implement a bitcoin-like blockchain by changing the
contents of a transaction from real transaction to updates.
The remain parts are the same, i.e. transaction will be signed
by sender, using proof of work as the consensus mechanism,
each block stores a SHA256-hash value of the previous block
(except the genesis block), the longest chain rule to decide
which chain to follow.

5.1 Transaction with Updates
A transaction is always carried out between two parties, and
we denote them with fromAddress, and toAddress. Note that
these two addresses can be the same when a patient modifies
his/her own records. The role attribute specifies the role
of the sender (fromAddress), which can be patient, doctor ,
or researcher . The bx attribute stores literal representation
of a bidirectional program which will be executed on the
blockchain’s network nodes. diff represents the difference
between updated view and original view.

class Transaction {

fromAddress: string;

toAddress: string;

role: string;

bx: string;

diff: string;

signature: string;

}

When constructing a transaction, sender uses his/her pri-
vate key to sign the SHA256 value of string concatenation of
all other attributes’ value in the transaction as the signature
value. Only a transaction signed by sender can pass the verifi-
cation using sender’s public key (derived from fromAddress)
before adding to the blockchain or during validating of the
blockchain, which prevents malicious tampering of the trans-
action data. Following is a transaction example.
{

fromAddress: '04384517 a2b5b5b336f16c6b84 ...',

toAddress: '04384517 a2b5b5b336f16c6b84 ...',

role: 'patient ',

bx: 'new RearrS(new PProd(new PVar() ,...),new

EProd(new EDir(new DLeft(new DVar())) ,...),

new UProd(new Replace () ,...))',

diff:'@@ -10 ,1+10 ,1@@\n-null\n+" Ibuprofen "\n@@

-14 ,1+14 ,1@@\n-null\n+"one tablet each 4h"',

signature:'304502207 b541194988c10b7fe756 ...'

}

Blockchain-based Bidirectional Transformations for Access Control and Data Sharing in EMRs Internetware’20, May 12–14, 2021, Singapore, Singapore

{

 data: {

 first: {

 patientId:

 13345552244

 },

 second: {

 first : {

 medicationName:

 null

 },

 second: {

 dosage:

 null

 },

 ……

}

{

 data: {

 first: {

 patientId:

 13345552244

 },

 second: {

 first : {

 medicationName:

 "Ibuprofen"

 },

 second: {

 dosage:

 "one tablet every 4h"

 },

 ……

}

Figure 5. An Example of View Updating

Since the role in the transaction is patient which means
a patient modifies his/her own data, the fromAddress and
toAddress are the same.

5.2 Difference Computation
Even though view is relatively small compared with source,
since a blockchain may contains billions of transactions, it
still takes lots of disk space if we directly store the whole
updated view in the transaction. On the other hand, usually
updates on view are small, so we store the difference of
updated view with original view based on the classical diff
algorithm [15].
In Figure 5, the left side is a view queried by patient’s

doctor. The doctor adds medicationName and dosage for
the patient as shown on the right side. Text marked in red
denotes the updated parts.

We compute the difference between these two views as a
patch:

@@ -10,1 +10,1 @@

- null

+ "Ibuprofen"

@@ -14,1 +14,1 @@

- null

+ "one tablet every 4h"

Since the original view can be constructed from blockchain
through get transformation, patching the original view with
the patch, we get the updated view.

5.3 Source Construction
5.3.1 Source Initialization. Patient, doctor, and researcher
only see a small view of the whole source data. They always
modify the view instead of directly changing the source. We
use bidirectional transformation to put the updates on view
back to source. So initially there should be a template source.
In our blockchain system, we implement an init function
that initializes a source for updating.

Initial

Source
Source 1

tx1.diff

tx
1 .b

x
-p

u
t

Latest

Sourcetx
n
-1 .b

x
-p

u
t

Source n-1

View1

tx1.bx-get

View1’

patch

View2’ Viewn-1’

tx
2 .b

x
-p

u
t

Figure 6. Source Construction through a Sequence of Puts
5.3.2 Latest Source Construction. If there are no trans-
actions related to an given address, then an initial source is
the latest source. Otherwise, the latest source can be com-
puted by applying all the related transactions in order, since
all the modifications are recorded in transactions. Figure. 6
illustrates how a latest source is computed. Note that we
suppose all the transactions in this figure is related to one
person, which means the toAddress is the same with a given
address.

We use tx to represent transaction, and tx1.bx means the
bidirectional program stored in transaction tx1. View1 is the
original view computed by executing get direction of tx1 .bx
on Initial Source, then patching View1 with tx1 .diff to get
updated view View ′

1. Source 1 is computed by executing put
direction of tx1 .bx with View ′

1 on Initial Source. Source 2 is
computed by executing put direction of tx2 .bx with View ′

2
on Source 1 and so on. Finally, we get the latest source.

5.4 View Querying
We have described how a source can be constructed in the
previous subsection, now we will show how to query a view
from the blockchain through bidirectional transformation.
In order to get a view from source, we firstly need to have a
source. So we call getEMRofAddress function which is used
to construct the latest source.

TypeScript offers a transpile function that takes a program
string in TypeScript and translates it into JavaScript. By
using JavaScript’s built-in eval function, the program in text
becomes a runnable program assigned to variable runnable.
Finally, by executing the get function, we get a view.

getViewofAddress(address: string , role: string ,

bxStr: string) {

let source: Source = this.getEMRofAddress(

address);

bx = ts.transpile(bxStr),

runnable: any = eval(bx),

view = runnable.get(role , source);

return view;

}

5.5 Validity Checking of An Update
Before adding a transaction to blockchain, we will check
whether the updated view is valid or not by calling the put

Internetware’20, May 12–14, 2021, Singapore, Singapore Zan and Hu, et al.

direction of the bidirectional transformation program in the
transaction. The blockchain will only accept valid transac-
tions. If put fails, it means the updated view does not pass
the bidirectional semantics (may break well-behavedness) or
violates the permission defined in the source.

isValidBX(tx: Transaction) {

let source: Source = this.getEMRofAddress(tx.

toAddress),

bx = ts.transpile(tx.bx),

runnable: any = eval(bx),

view = runnable.get(tx.role , source),

newView = patch(source , tx.diff);

try {

source = runnable.put(tx.role , source ,

newView);

} catch (err) {

return false;

}

return true;

}

6 Case Study of EMRs
This is a typical example about sharing medical data between
different people from Li et al.’s work [13]. Now we will show
how it can be implemented in our designed system.

Table 1 gives two full medical records that contains a per-
son’s basic information such as address on the blockchain,
patient’s ID in the medical system, medication name, pa-
tient’s address, clinical information (clinical name), prescrip-
tion (medication name and dosage), details about medication
(mechanism of action and mode of action). Table 2 shows
different roles’ read/write permissions. For example, patient
can not read mechanism of action and mode of action, can
not change dosage, but can modify address.

6.1 Permission Checking
Table 3 shows a view for researcher. As described in Table 2,
a researcher can only read medication name, mechanism of
action and mode of action, modify mechanism of action, but
he/she cannot change mode of action.
A bidirectional program shown in Fig. 7 can be used to

get a researcher’s view from source as shown in Table 3, and
reflect updates on the view back to source if themodifications
satisfy the permission defined on the source. The core idea of
this program is to rearrange the source to a new sub-source
and matches each element of this new sub-source with view
element.

• Lines 2-5 performs pattern matching on the source,
resulting in three variables that points to medication
name, mechanism of action and mode of action respec-
tively.

• Lines 6-10 constructs a new sub-source using these
three variables. For example, the left part of EProd is

1 new RearrS(

2 new PRight(

3 new PProd(

4 new PVar(),

5 new PRight(new PRight(new PRight(new

PProd(new PVar(), new PVar())))))),

6 new EProd(

7 new EDir(new DLeft(new DVar())),

8 new EProd(

9 new EDir(new DRight(new DLeft(new DVar()

))),

10 new EDir(new DRight(new DRight(new DVar

()))))),

11 new UProd(new Replace (), new UProd(new

Replace (), new Replace ())))

Figure 7. Bidirectional Update Program for Researcher

new EDir (new DLeft (new DVar ())), which retrieves the
medication name in the result of pattern matching.

• The sub-source and view are in the form of (val, (val, val)),
so our bidirectional program (line 11) uses UProd to de-
compose both sub-source and view, and Replace each
part with the corresponding view element.

Table 4 gives an example that researcher modifies Mode of
Action fromMoA1 toMoA1′. According to Table 2, researcher
cannot modify Mode of Action. So the AddTx function in
Fig. 3 will fail as this updated viewwill not pass the validation
step on the blockchain.
Update record fail: Error: Source and view data

are not equal , while the person only has read

right. Role: researcher

at Replace.put (~/ blockchain/js-bx/src/core.js

:33:23)

at UProd.put (~/ blockchain/js-bx/src/core.js

:300:38)

at UProd.put (~/ blockchain/js-bx/src/core.js

:300:38)

at RearrS.put (~/ blockchain/js-bx/src/core.js

:227:52)

at Blockchain.isValidBX (~/ blockchain/js-

blockchain/src/Blockchain.js :164:31)

Researcher has no permission to modify Mode of Ac-
tion, but he/she can change Mechanism of Action, Table 5
shows researcher changes Mechanism of Action from MeA1
toMeA1′. Since researcher has the permission to update this
attribute, the updated view will pass the validation. Finally
the bidirectional program and view difference will be packed
up as a transaction and stored on the blockchain. No one can
change the view difference, no one can change the bidirec-
tional program.
{

fromAddress: '04 c161ca3dce084decc3 ...',

toAddress: '04384517 a2b5b5b336f1 ...',

role: 'researcher ',

Blockchain-based Bidirectional Transformations for Access Control and Data Sharing in EMRs Internetware’20, May 12–14, 2021, Singapore, Singapore

Table 1. Full Medical Records
Address on Chain Patient ID Medication Name Clinical Data Address Dosage Mechanism of Action Mode of Action

04384517a... 188 Ibuprofen CliD1 Sapporo one tablet every 4h MeA1 MoA1
04c161ca3... 189 Wellbutrin CliD2 Osaka 100 mg twice daily MeA2 MoA2

Table 2. Permission Table

Attribute Patient Doctor Researcher
Read Write Read Write Read Write

PatientId true false true true false false
Medication Name true false true true true true
Clinical Data true true true true false false
Address true true true false false false
Dosage true false true true false false
Mechanism of Action false false true false true true
Mode of Action false false true false true false

Table 3. Researcher’s View
Address on Chain Medication Name Mechanism of Action Mode of Action

04384517a... Ibuprofen MeA1 MoA1

Table 4. Modified Researcher’s View 1
Address on Chain Medication Name Mechanism of Action Mode of Action

04384517a... Ibuprofen MeA1 MoA1’

Table 5. Modified Researcher’s View 2
Address on Chain Medication Name Mechanism of Action Mode of Action

04384517a... Ibuprofen MeA1’ MoA1

bx: 'new RearrS(new PRight (...), new EProd

(...) , new UProd(new Replace (), ...));',

diff: '@@ -10,1 +10,1 @@ -\n"MeA1"\n+"MeA1\'"',

signature: '3046022100 a6c16d14d34267c8f ...'

}

6.2 On-chain Data Sharing and Updating
We initialized a blockchain with 5 nodes, and a set of RESTful
APIs can be used tomanage the chain, e.g. adding transaction,
and querying a view from the blockchain. Each node will
broadcast its status every one minute for synchronization.
Since different nodes are synchronized, querying on any
node is the same and transactions pushed to any node will
be broadcasted to the others.
We designed an experiment to show the correctness and

usefulness of our system, by executing a sequence of queries
and updates on the blockchain from different nodes with dif-
ferent roles. The experiment contains 12 test-cases as shown
in Table 6. Own to the ability of fine-grained data sharing of
bidirectional transformation, we can easily write different
BX programs to share different piece of data. The experiment
result shows:

• If a role has no read permission for some attributes,
then the query action will fail (test-case (5), and (9));

• If a role only has read permission for some attributes,
then he/she cannot modify the data (test-case (4), (8),
and (12));

Table 6. Experiment Cases

Role Update
Result

Permission
check

Well-
behavedness

patient

(1) query address, clinicalData pass pass
(2) update address, clinicalData pass pass
(3) query dosage pass pass
(4) modify dosage fail -
(5) query Mechanism of Action fail -

doctor (6) query medicationName, dosage pass pass
(7) update medicationName, dosage pass pass
(8) modify Mechanism of Action fail -

researcher (9) query PatientId, Address fail -
(10) query Mechanism of Action pass pass
(11) update Mechanism of Action pass pass
(12) modify Mode of Action fail -

• If a role has write permission for some attributes,
he/she can update the data (test-case (2), (7), and (11)).

• If permission check is passed, then thewell-behavedness
property is also satisfied.

7 Related Work
In bidirectional programming, Foster et al. [8] proposed a
novel bidirectional transformation framework to build up-
datable security views. They enrich types of basic bidirec-
tional combinators to capture notions of confidentiality and
integrity. If the data item shall not be modified, the type
annotation will have an extra mark E (short for endorsed),
and updates will be refused; If allowing updates, the type
annotation will have an extra mark T (short for tainted).

The potential of using blockchain technology for handling
healthcare data has been discussed widely. The first idea of
introducing blockchain into the design of managing medical
record data was presented in [19]. They use blockchain to
store the medical data directly and provide a healthcare data
gateway to enable patient to control and share their data
between different entities that may use patient data.
MedRec [2] stores raw medical records locally in sepa-

rate provider’s and patient’s databases, and references to
assembled medical data are encoded onto blockchain. Autho-
rization data are stored on the blockchain’s smart contracts,
replicated in each node. MedRec gathers scattered medical
data by storing references to medical data on the blockchain,
forms a unified access and permission management platform.

Different blockchains [1, 6, 14, 18] are used to manage data
sharing, and they all follow a similar approach that stores
medical data off-chain and permission data on-chain, then
utilizes smart contracts to control the access to medical data.

Li et al. [13] provides an innovative approach that focuses
on data sharing by utilizing smart contracts and bidirec-
tional transformation. Smart contracts define permissions

Internetware’20, May 12–14, 2021, Singapore, Singapore Zan and Hu, et al.

for each role. If permitted, then using bidirectional trans-
formation to synchronize related medical data among re-
searcher, doctor and patient’s local database off-chain. In
our framework, we implement permission checking as part
of the language semantics to guarantee the consistency of
permission and action. We combine bidirectional transfor-
mation with blockchain seamlessly. Data is stored on chain,
transformation is also stored on chain, which guarantees the
integrity of both data an transformation.

8 Conclusion
In this paper, a blockchain-based bidirectional transforma-
tion framework for access control and data sharing for EMRs
is proposed. In our system, we do not store full EMRs, which
can be construct through a sequence of related transactions
by using put direction of bidirectional transformation pro-
grams stored in transactions. Using bidirectional transforma-
tion, fine-grained data sharing between different entities can
be accomplished. The bidirectional transformation seman-
tics control read/write access for a given role, which also
guarantee the consistency between permission and action.

In current work, we assume the actor is trustable and we
did not check his/her identity. For future work, we can deploy
another blockchain to store role authentication information
and query from this chain to check the identity before exe-
cuting get/put transformation on chain. Since information
stored on the blockchain are plaintext, we will investigate
encryption algorithms to figure out an approach for hiding
sensitive information.

Acknowledgements
We would like to thank the anonymous reviewers of In-
ternetware ’20 for their valuable comments. This work is
partially supported by Ph.D. start-up foundation of Longyan
University No. LB2020010 in China and the Japan Society for
the Promotion of Science (JSPS) Grant-in-Aid for Scientific
Research (S) No. 17H06099 and (A) No. 18H04093.

References
[1] Sandro Amofa, E. Boateng Sifah, K. O. . Obour Agyekum, Smahi Abla,

Qi Xia, James C. Gee, and Jianbin Gao. 2018. A Blockchain-based
Architecture Framework for Secure Sharing of Personal Health Data.
In 2018 IEEE 20th International Conference on e-Health Networking,
Applications and Services (Healthcom). 1–6.

[2] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. 2016.
MedRec: Using Blockchain for Medical Data Access and Permission
Management. In 2016 2nd International Conference on Open and Big
Data (OBD). 25–30.

[3] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel,
Andy Schürr, and James F. Terwilliger. 2009. Bidirectional Transforma-
tions: A Cross-Discipline Perspective. In Theory and Practice of Model
Transformations, Richard F. Paige (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 260–283.

[4] Barbosa Davi, Julien Cretin, Foster Greenberg, and Benjamin Pierce.
2010. Matching Lenses: Alignment and View Update. ACM SIGPLAN
Notices 45 (09 2010).

[5] Alevtina Dubovitskaya, Zhigang Xu, Samuel Ryu,Michael Schumacher,
and Fusheng Wang. 2017. Secure and Trustable Electronic Medical
Records Sharing using Blockchain. AMIA ... Annual Symposium pro-
ceedings. AMIA Symposium 2017 (08 2017).

[6] Kai Fan, ShangyangWang, Yanhui Ren, Hui Li, and Yintang Yang. 2018.
MedBlock: Efficient and Secure Medical Data Sharing Via Blockchain.
Journal of Medical Systems 42 (08 2018).

[7] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Ben-
jamin C. Pierce, and Alan Schmitt. 2007. Combinators for Bidirectional
Tree Transformations: A Linguistic Approach to the View-Update
Problem. ACM Trans. Program. Lang. Syst. 29, 3 (May 2007), 17–es.

[8] J. Nathan Foster, Benjamin C. Pierce, and Steve Zdancewic. 2009. Updat-
able Security Views. In 2009 22nd IEEE Computer Security Foundations
Symposium. 60–74.

[9] J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. 2008.
Quotient Lenses. SIGPLAN Not. 43, 9 (Sept. 2008), 383–396.

[10] Xiao He and Zhenjiang Hu. 2018. Putback-Based Bidirectional Model
Transformations. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ES-
EC/FSE 2018). Association for Computing Machinery, New York, NY,
USA, 434–444.

[11] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and
Keisuke Nakano. 2011. GRoundTram: An Integrated Framework for
Developing Well-behaved Bidirectional Model Transformations. In
2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). 480–483.

[12] Ko Hsiang-Shang, Tao Zan, and Zhenjiang Hu. 2016. BiGUL: A For-
mally Verified Core Language for Putback-Based Bidirectional Pro-
gramming. In Proceedings of the 2016 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation (St. Petersburg, FL, USA)
(PEPM ’16). Association for Computing Machinery, New York, NY,
USA, 61–72.

[13] Chunmiao Li, Yang Cao, Zhenjiang Hu, and Masatoshi Yoshikawa.
2019. Blockchain-Based Bidirectional Updates on Fine-Grained Medi-
cal Data. In 2019 IEEE 35th International Conference on Data Engineering
Workshops (ICDEW). 22–27.

[14] Jingwei Liu, Xiaolu Li, Lin Ye, Hongli Zhang, XiaojiangDu, andMohsen
Guizani. 2018. BPDS: A Blockchain Based Privacy-Preserving Data
Sharing for Electronic Medical Records. In 2018 IEEE Global Commu-
nications Conference (GLOBECOM). 1–6.

[15] Eugene W. Myers. 1986. An O(ND) Difference Algorithm and Its
Variations. Algorithmica 1 (1986), 251–266.

[16] Satoshi Nakamoto. 2009. Bitcoin: A Peer-to-Peer Electronic Cash
System. Cryptography Mailing list at https://metzdowd.com (03 2009).

[17] João Alexandre Saraiva, Pedro Martins, Zirun Zhu, Hsiang-Shang Ko,
and Zhenjiang Hu. 2015. BiYacc: Roll Your Parser and Reflective Printer
into One. Fourth International Workshop on Bidirectional Transforma-
tions (Bx 2015), 43–50.

[18] Qi Xia, Emmanuel Sifah, Abla Smahi, Sandro Amofa, and Xiaosong
Zhang. 2017. BBDS: Blockchain-Based Data Sharing for Electronic
Medical Records in Cloud Environments. Information 8 (04 2017), 44.

[19] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang.
2016. Healthcare Data Gateways: Found Healthcare Intelligence on
Blockchain with Novel Privacy Risk Control. Journal of medical sys-
tems 40 (10 2016), 218.

[20] Tao Zan, Li Liu, Hsiang-Shang Ko, and Zhenjiang Hu. 2016. Brul: A
Putback-Based Bidirectional Transformation Library for Updatable
Views. In Bx@ETAPS.

[21] Tao Zan, Hugo Pacheco, Hsiang-Shang Ko, and Zhenjiang Hu. 2016. Bi-
FluX: A Bidirectional Functional Update Language for XML. Computer
Software 33 (11 2016), 93–115.

	Abstract
	1 Introduction
	2 Background
	2.1 Bidirectional Transformation
	2.2 Blockchain

	3 Architecture Overview
	4 Refinement of BiGUL
	4.1 Data Structure for Medical Records
	4.2 Formalization of Bidirectional Transformation with Access Control
	4.3 Language Syntax
	4.4 Replace
	4.5 Source Rearrangement

	5 Design of Blockchain
	5.1 Transaction with Updates
	5.2 Difference Computation
	5.3 Source Construction
	5.4 View Querying
	5.5 Validity Checking of An Update

	6 Case Study of EMRs
	6.1 Permission Checking
	6.2 On-chain Data Sharing and Updating

	7 Related Work
	8 Conclusion
	References

